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ABSTRACT
In large systems, it is important for agents to learn to act ef-
fectively, but sophisticated multi-agent learning algorithms
generally do not scale. An alternative approach is to find re-
stricted classes of games where simple, efficient algorithms
converge. It is shown that stage learning efficiently con-
verges to Nash equilibria in large anonymous games if best-
reply dynamics converge. Two features are identified that
improve convergence. First, rather than making learning
more difficult, more agents are actually beneficial in many
settings. Second, providing agents with statistical informa-
tion about the behavior of others can significantly reduce
the number of observations needed.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; J.4 [Social and Behavioral

Sciences]: Economics

General Terms
Algorithms, Economics, Theory

Keywords
Multiagent Learning, Game Theory, Large Games, Anony-
mous Games, Best-Reply Dynamics

1. INTRODUCTION
Designers of distributed systems are frequently unable to

determine how an agent in the system should behave, be-
cause optimal behavior depends on the user’s preferences
and the actions of others. A natural approach is to have
agents use a learning algorithm. Many multiagent learning
algorithms have been proposed including simple strategy up-
date procedures such as fictitious play [10], multiagent ver-
sions of Q-learning [25], and no-regret algorithms [5].

However, as we discuss in Section 2, existing algorithms
are generally unsuitable for large distributed systems. In a
distributed system, each agent has a limited view of the ac-
tions of other agents. Algorithms that require knowing, for
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example, the strategy chosen by every agent cannot be im-
plemented. Furthermore, the size of distributed systems re-
quires fast convergence. Users may use the system for short
periods of time and conditions in the system change over
time, so a practical algorithm for a system with thousands
or millions of users needs to have a convergence rate that is
sublinear in the number of agents. Existing algorithms tend
to provide performance guarantees that are polynomial or
even exponential. Finally, the large number of agents in the
system guarantees that there will be noise. Agents will make
mistakes and will behave in unexpectedly. Even if no agent
changes his strategy, there can still be noise in agent payoffs.
For example, a gossip protocol will match different agents
from round to round; congestion in the underlying network
may effect message delays between agents. A learning algo-
rithm needs to be robust to this noise.

While finding an algorithm that satisfies these require-
ments for arbitrary games may be difficult, distributed sys-
tems have characteristics that make the problem easier. First,
they involve a large number of agents. Having more agents
may seem to make learning harder—after all, there are more
possible interactions. However, it has the advantage that the
outcome of an action typically depends only weakly on what
other agents do. This makes outcomes robust to noise. Hav-
ing a large number of agents also make it less useful for an
agent to try to influence others; it becomes a better policy to
try to learn an optimal response. In contrast, with a small
number of agents, an agent can attempt to guide learning
agents into an outcome that is beneficial for him.

Second, distributed systems are often anonymous [1]; it
does not matter who does something, but rather how many
agents do it. For example, when there is congestion on a link,
the experience of a single agent does not depend on who is
sending the packets, but on how many are being sent.

Finally, and perhaps most importantly, in a distributed
system the system designer controls the game agents are
playing. This gives us a somewhat different perspective than
most work, which takes the game as given. We do not need
to solve the hard problem of finding an efficient algorithm
for all games. Instead, we can find algorithms that work
efficiently for interesting classes of games, where for us “in-
teresting”means“the type of games a system designer might
wish agents to play.” Such games should be “well behaved,”
since it would be strange to design a system where an agent’s
decisions can influence other agents in pathological ways.

In Section 3, we show that stage learning [9] is robust,
implementable with minimal information, and converges ef-
ficiently for an interesting class of games. In this algorithm,
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agents divide the rounds of the game into a series of stages.
In each stage, the agent uses a fixed strategy except that
he occasionally explores. At the end of a stage, the agent
chooses as his strategy for the next stage whatever strategy
had the highest average reward in the current stage. We
prove that, under appropriate conditions, a large system of
stage learners will follow (approximate) best-reply dynamics
despite errors and exploration.

For games where best-reply dynamics converge, our theo-
rem guarantees that learners will play an approximate Nash
equilibrium. In contrast to previous results where the con-
vergence guarantee scales poorly with the number of agents,
our theorem guarantees convergence in a finite amount of
time with an infinite number of agents. While the assump-
tion that best-reply dynamics converge is a strong one, many
interesting games converge under best-reply dynamics, in-
cluding dominance solvable games and games with mono-
tone best replies. Marden et al. [17] have observed that
convergence of best-reply dynamics is often a property of
games that humans design. Moreover, convergence of best-
reply dynamics is a weaker assumption than a common as-
sumption made in the mechanism design literature, that the
games of interest have dominant strategies (each agent has
a strategy that is optimal no matter what other agents do).

Simulation results, presented in Section 4, show that con-
vergence is fast in practice: a system with thousands of
agents can converge in a few thousand rounds. Further-
more, we identify two factors that determine the rate and
quality of convergence. One is the number of agents: having
more agents makes the noise in the systen more consistent
so agents can learn using fewer observations. The other
is giving agents statistical information about the behavior
of other agents; this can speed convergence by an order of
magnitude. Indeed, even noisy statistical information about
agent behavior, which should be relatively easy to obtain
and disseminate, can significantly improve performance.

2. RELATED WORK
One approach to learning to play games is to generalize

reinforcement learning algorithms such as Q-learning [25].
One nice feature of this approach is that it can handle games
with state, which is important in distributed systems. In
Q-learning, an agent associates a value with each state-
action pair. When he chooses action a in state s, he up-
dates the value Q(s, a) based on the reward he received
and the best value he can achieve in the resulting state s′

(maxa′ Q(s′, a′)). When generalizing to multiple agents, s
and a become vectors of the state and action of every agent
and the max is replaced by a prediction of the behavior
of other agents. Different algorithms use different predic-
tions; for example, Nash-Q uses a Nash equilibrium calcula-
tion [15]. See [22] for a survey.

Unfortunately, these algorithms converge too slowly for
a large distributed system. The algorithm needs to expe-
rience each possible action profile many times to guarantee
convergence. So, with n agents and k strategies, the naive
convergence time is O(kn). Even with a better represen-
tation for anonymous games, the convergence time is still
O(nk) (typically k � n). There is also a more fundamen-
tal problem with this approach: it assumes information that
an agent is unlikely to have. In order to know which value
to update, the agent must learn the action chosen by ev-
ery other agent. In practice, an agent will learn something

about the actions of the agents with whom he directly in-
teracts, but is unlikely to gain much information about the
actions of other agents.

Another approach is no-regret learning, where agents choose
a strategy for each round that guarantees that the regret of
their choices will be low. Hart and Mas-Colell [13] present
such a learning procedure that converges to a correlated equi-
librium [21] given knowledge of what the payoffs of every
action would have been in each round. They also provide
a variant of their algorithm that requires only information
about the agent’s actual payoffs [14]. However, to guarantee
convergence to within ε of a correlated equilibrium requires
O(kn/ε2 log kn), still too slow for large systems. Further-
more, the convergence guarantee is that the distribution of
play converges to equilibrium; the strategies of individual
learners will not converge. Better results can be achieved
in restricted settings. For example, Blum et al. [2] showed
that in routing games a continuum of no-regret learners will
approximate Nash equilibrium in a finite amount of time.

Foster and Young [7] use a stage-learning procedure that
converges to Nash equilibrium for two-player games. Ger-
mano and Lugosi [11] showed that it converges for generic n-
player games (games where best replies are unique). Young [26]
uses a similar algorithm without explicit stages that also
converges for generic n-player games. Rather than selecting
best replies, in these algorithms agents choose new actions
randomly when not in equilibrium. Unfortunately, these
algorithms involve searching the whole strategy space, so
their convergence time is exponential. Another algorithm
that uses stages to provide a stable learning environment is
the ESRL algorithm for coordinated exploration [24].

Marden et al. [18, 19] use an algorithm with experimen-
tation and best replies but without explicit stages that con-
verges for weakly acyclic games, where best-reply dynamics
converge when agents move one at a time, rather than mov-
ing all at once, as we assume here. Convergence is based on
the existence of a sequence of exploration moves that lead
to equilibrium. With n agents who explore with probability
ε, this analysis gives a convergence time of O(1/εn). Fur-
thermore, the guarantee requires ε to be sufficiently small
that agents essentially explore one at a time, so ε needs to
be O(1/n).

There is a long history of work examining simple learn-
ing procedures such as fictitious play [10], where each agent
makes a best response assuming that each other player’s
strategy is characterized by the empirical frequency of his
observed moves. In contrast to algorithms with convergence
guarantees for general games, these algorithms fail to con-
verge in many games. But for classes of games where they
do converge, they tend to do so rapidly. However, most work
in this area assumes that the actions of agents are observed
by all agents, agents know the payoff matrix, and payoffs are
deterministic. A recent approach in this tradition is based
on the Win or Learn Fast principle, which has limited con-
vergence guarantees but often performs well in practice [4].

There is also a body of empirical work on the convergence
of learning algorithms in multiagent settings. Q-learning has
had empirical success in pricing games [23], n-player coop-
erative games [6], and grid world games [3]. Greenwald at
al. [12] showed that a number of algorithms, including stage
learning, converge in a variety of simple games. Marden et
al. [19] found that their algorithm converged must faster in a
congestion game than the theoretical analysis would suggest.
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Our theorem suggests an explanation for these empirical ob-
servations: best-reply dynamics converge in all these games.
While our theorem applies directly only to stage learning, it
provides intuition as to why algorithms that learn “quickly
enough” and change their behavior “slowly enough” rapidly
converge to Nash equilibrium in practice.

3. THEORETICAL RESULTS

3.1 Large Anonymous Games
We are interested in anonymous games with countably

many agents. Assuming that there are countably many
agents simplifies the proofs; it is straightforward to extend
our results to games with a large finite number of agents.
Our model is adapted from that of [1]. Formally, a large
anonymous game is characterized by a tuple Γ = (N, A, P, Pr).

• N is the countably infinite set of agents.

• A is a finite set of actions from which each agent can
choose (for simplicity, we assume that each agent can
choose from the same set of actions).

• Δ(A), the set of probability distributions over A, has
two useful interpretations. The first is as the set of
mixed actions. For a ∈ A we will abuse notation and
denote the mixed action that is a with probability 1 as
a. In each round each agent chooses one of these mixed
actions. The second interpretation of ρ ∈ Δ(A) is as
the fraction of agents choosing each action a ∈ A. This
is important for our notion of anonymity, which says
an agent’s utility should depend only on how many
agents choose each action rather than who chooses it.

• G = {g : N → Δ(A)} is the set of (mixed) action
profiles (i.e. which action each agent chooses). Given
the mixed action of every agent, we want to know the
fraction of agents that end up choosing action a. For
g ∈ G, let g(i)(a) denote the probability with which
agent i plays a according to g(i) ∈ Δ(A). We can then
express the fraction of agents in g that choose action
a as limn→∞(1/n) n

i=0 g(i)(a), if this limit exists. If
the limit exists for all actions a ∈ A, let ρg ∈ Δ(A)
give the value of the limit for each a. The profiles g
that we use are all determined by a simple random
process. For such profiles g, the strong law of large
numbers (SLLN) guarantees that with probability 1 ρg

is well defined. Thus it will typically be well defined
(using similar limits) for us to talk about the fraction
of agents who do something.

• P ⊂ R is a finite set of payoffs agents can receive.

• Pr : A × Δ(A) → Δ(P ) denotes the distribution over
payoffs that results when the agent performs action
a and other agents follow action profile ρ. We use a
probability distribution over payoffs rather than a pay-
off to model the fact that agent payoffs may change
even if no agent changes his strategy. The expected
utility of an agent who performs mixed action s when
other agents follow action distribution ρ is u(s, ρ) =

a∈A p∈P ps(a) Pra,ρ(p). Our definition of Pr in

terms of Δ(A) rather than G ensures the the game
is anonymous. We further require that Pr (and thus

u) be Lipschitz continuous.1 For definiteness, we use
the L1 norm as our notion of distance when specifying
continuity (the L1 distance between two vectors is the
sum of the absolute values of the differences in each
component). Note that this formulation assumes all
agents share a common utility function.

An example of a large anonymous game is one where, in
each round, each agent plays a two-player game against an
opponent chosen at random. Then A is the set of actions
of the two-player game and P is the set of payoffs of the
game. Once every agent chooses an action, the distribution
over actions is characterized by some ρ ∈ Δ(A). Let pa,a′

denote the payoff for the agent if he plays a and the other
agent plays a′. Then the utility of mixed action s given
distribution ρ is

u(s, ρ) =

a,a′∈A2

s(a)ρ(a′)pa,a′ .

3.2 Best-Reply Dynamics
Given a game Γ and an action distribution ρ, a natural

goal for an agent is to play the action that maximizes his
expected utility with respect to ρ: argmaxa∈A u(a, ρ). We
call such an action a best reply to ρ. In a practical amount
of time, an agent may have difficulty determining which of
two actions with close expected utilities is better, so we will
allow agents to choose actions that are close to best replies.
If a is a best reply to ρ, then a′ is an η-best reply to ρ if
u(a′, ρ) + η ≥ u(a, ρ). There may be more than one η-best
reply; we denote the set of η-best replies ABRη(ρ).

We do not have a single agent looking for a best reply;
every agent is trying to find a one at the same time. If
agents start off with some action distribution ρ0, after they
all find a best reply there will be a new action distribution ρ1.
We assume that ρ0(a) = 1/|A| (agents choose their initial
strategy uniformly at random), but our results apply to any
distribution used to determine the initial strategy. We say
that a sequence (ρ0, ρ1, . . .) is an η-best-reply sequence if the
support of ρi+1 is a subset of ABRη(ρi); that is ρi+1 gives
positive probability only to approximate best replies to ρi.
A η best-reply sequence converges if there exists some t such
that for all t′ > t, ρt′ = ρt. Note that this is a particularly
strong notion of convergence because we require the ρt to
converge in finite time and not merely in the limit. A game
may have infinitely many best-reply sequences, so we say
that approximate best-reply dynamics converge if there exists
some η > 0 such that every η-best-reply sequence converges.
The limit distribution ρt determines a mixed strategy that
is an η-Nash equilibrium.

Our theorem shows that learners can successfully learn in
large anonymous games where approximate best-reply dy-
namics converge. The number of stages needed to converge
is determined by the number of best replies needed before
the sequence converges. It is possibly to design games that
have long best-reply sequences, but it practice most games
have short sequences. One condition that guarantees this is
if ρ0 and all the degenerate action distributions a ∈ A (i.e.,

1Lipschitz continuity imposes the additional constraint that
there is some constant K such that |Pr(a, ρ)−Pr(a, ρ′)|/||ρ−
ρ′||1 ≤ K for all ρ and ρ′. Intuitively, this ensures that the
distribution of outcomes doesn’t change “too fast.” This is a
standard assumption that is easily seen to hold in the games
that have typically been considered in the literature.
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distributions that assign probability 1 to some a ∈ A) have
unique best replies. In this case, there can be at most |A|
best replies before equilibrium is reached. Furthermore, in
such games the distinction between η-best replies and best
replies is irrelevant; for sufficiently small η, a η-best reply is
a best reply. It is not hard to show that the property that
degenerate strategies have unique best replies is generic; it
holds for almost every game.

3.3 Stage Learners
An agent who wants to find a best reply may not know the

set of payoffs P , the mapping from actions to distributions
over payoffs Pr, or the action distribution ρ (and, indeed, ρ
may be changing over time), so he will have to use some type
of learning algorithm to learn it. Our approach is to divide
the play of the game into a sequence of stages. In each stage,
the agent almost always plays some fixed action a, but also
explores other actions. At the end of the stage, he chooses a
new a′ for the next stage based on what he has learned. An
important feature of this approach is that agents maintain
their actions for the entire stage, so each stage provides a
stable environment in which agents can learn. To simplify
our results, we specify a way of exploring and learning within
a stage (originally described in [9]), but our results should
generalize to any “reasonable” learning algorithm used to
learn within a stage. (We discuss what is “reasonable” in
Section 5.) In this section, we show that, given a suitable
parameter, at the each stage most agents will have learned
a best reply to the environment of that stage.

Given a game Γ, in each round t agent i needs to se-
lect a mixed action si,t. Our agents use strategies that we
denote aε, for a ∈ A, where aε(a) = 1 − ε and aε(a

′ 	=
a) = ε/(|A| − 1). Thus, with aε, an agent almost always
plays a, but with probability ε explores other strategies uni-
formly at random. Thus far we have not specified what
information an agent can use to choose si,t. Different games
may provide different information. All that we require is
that an agent know all of his previous actions and his pre-
vious payoffs. More precisely, for all t′ < t, he knows his
action at′(i) (which is determined by si,t′) and his payoffs
pt′(i) (which is determined by Pr(ai,t′ , ρt′), where ρt′ is the
action distribution for round t′; note that we do not as-
sume that the agent knows ρt′ .) Using this information, we
can express the average value of an action over the pre-
vious τ = 
1/ε2� rounds (the length of a stage).2 Let
H(a, i, t) = {t − τ ≤ t′ < t | at′(i) = a} be the set of recent
rounds in which a was played by i. Then the average value
is V (a, i, t) = t′∈H(a,i,t) pt′(i)/|H(a, i, t)| if |H(a, i, t)| > 0
and 0 otherwise. While we need the value of H only at
times that are multiples of τ , for convenience we define it
for arbitrary times t.

We say that an agent is an ε-stage learner if he chooses
his actions as follows. If t = 0, st is chosen at random from
{aε | a ∈ A}. If t is a nonzero multiple of τ , si,t = a(i, t)ε

where a(i, t) = argmaxa∈A V (a, i, t). Otherwise, si,t = si,t−1.
Thus, within a stage, his mixed action is fixed and at the end
of a stage he updates it to use the action with the highest
average value during the previous stage.

The evolution of a game played by stage learners is not
deterministic; each agent chooses a random si,0 and the se-

2The use of the exponent 2 is arbitrary. We require only
that the expected number of times a strategy is explored
increases as ε decreases.

quence of at(i) and pt(i) he observes is also random. How-
ever, with a countably infinite set of agents, we can use the
SLLN to make statements about the overall behavior of the
game. Let gt(i) = si,t. A run of the game consists of a
sequence of triples (gt, at, pt). The SLLN guarantees that
with probability 1 the fraction of agents who choose a strat-
egy a in at is ρgt(a). Similarly, the fraction of agents who
chose a in at that receive payoff p will be Pr(a, ρgt)(p) with
probability 1.

To make our notion of a stage precise, we refer to the se-
quence of tuples (gnτ , anτ , pnτ ) . . . (g(n+1)τ−1, a(n+1)τ−1, p(n+1)τ−1)
as stage n of the run. During stage n there is a stationary
action distribution that we denote ρgnτ . If si,(n+1)τ = aε

and a ∈ ABRη(gnτ ), then we say that agent i has learned
an η-best reply during stage n of the run. As the following
lemma shows, for sufficiently small ε, most agents will learn
an η-best reply.

Lemma 3.1. For all large anonymous games Γ, action
profiles, approximations η > 0, and probabilities of error
e > 0, there exists an ε∗ > 0 such that for ε < ε∗ and all n,
if all agents are ε-stage learners, then at least a 1−e fraction
of agents will learn an η-best reply during stage n.

Proof. (Sketch) On average, an agent using strategy aε

plays action a (1 − ε)τ times during a stage and plays all
other actions ετ/(n−1) times each. For τ large, the realized
number of times played will be close to the expectation value
with high probability. Thus, if ετ is sufficiently large, then
the average payoff from each action will be exponentially
close to the true expected value (via a standard Hoeffding
bound on sums of i.i.d. random variables), and thus each the
learner will correctly identify an action with approximately
the highest expected payoff with probability at least 1 − e.
By the SLLN, at least a 1 − e fraction of agents will learn
an η-best reply. A detailed version of this proof in a more
general setting can be found in [9].

3.4 Convergence Theorem
Thus far we have defined large anonymous games where

approximate best-reply dynamics converge. If all agents in
the game are ε-stage learners, then the sequence ρ̂0, ρ̂1, . . . of
action distributions in a run of the game is not a best-reply
sequence, but it is close. The action used by most agents
most of the time in each ρ̂n is the action used in ρn for some
approximate best reply sequence.

In order to prove this, we need to define “close.” Our
definition is based on the error rate e and exploration rate
ε that introduces noise into ρ̂n. Intuitively, distribution ρ̂
is close to ρ if, by changing the strategies of an e fraction
of agents and having all agents explore an ε fraction of the
time, we can go from an action profile with corresponding
action distribution ρ to one with corresponding distribution
ρ̂. Note that this definition will not be symmetric.

In this definition, g identifies what (pure) action each
agent is using that leads to ρ, g′ allows an e fraction of
agents to use some other action, and ĝ incorporates the fact
that each agent is exploring, so each strategy is an aε (the
agent usually plays a but explores with probability ε).

Definition 3.2. Action distribution ρ̂ (e, ε)-close to ρ if
there exist g, g′, and ĝ ∈ G such that:

• ρ = ρg and ρ̂ = ρĝ;
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• g(i) ∈ A for all i ∈ N;

• ||ρg − ρg′ ||1 ≤ 2e (this allows an e fraction of agents
in g′ to play a different strategy from g);

• for some ε′ ≤ ε, if g′(i) = a then ĝ(i) = aε′ .

The use of ε′ in the final requirement ensures that if two
distributions are (e, ε)-close then they are also (e′, ε′)-close
for all e′ ≥ e and ε′ ≥ ε. As an example of the asymmetry
of this definition, aε is (0, ε) close to a, but the reverse is
not true. While (e, ε)-closeness is a useful distance measure
for our analysis, it is an unnatural notion of distance for
specifying the continuity of u, where we used the L1 norm.
The following simple lemma shows that this distinction is
unimportant; if ρ̂ is sufficiently (e, ε)-close to ρ then it is
close according to the L1 measure as well.

Lemma 3.3. If ρ̂ is (e, ε)-close to ρ, then ||ρ̂−ρ||1 ≤ 2(e+
ε).

Proof. Since ρ̂ is (e, ε)-close to ρ, there exist g, g′, and
ĝ as in Definition 3.2. Consider the distributions ρg = ρ,
ρg′ , and ρĝ = ρ̂. We can view these three distributions as
vectors, and calculate their L1 distances. By Definition 3.2,
||ρg − ρg′ ||1 ≤ 2e. ||ρg′ − ρĝ||1 ≤ 2ε because an ε fraction
of agents explore. Thus by the triangle inequality, the L1
distance between ρ and ρ̂ is at most 2(e + ε).

We have assumed that approximate best reply sequences
of ρn converge, but during a run of the game agents will
actually be learning approximate best replies to ρ̂n. The
following lemma shows that this distinction does not matter
if ρ and ρ̂ are sufficiently close.

Lemma 3.4. For all η there exists a dη such that if ρ̂
is (e, ε)-close to ρ, e > 0, ε > 0, and e + ε < dη then
ABR(η/2)(ρ̂) ⊆ ABRη(ρ).

Proof. Let K be the maximum of the Lipschitz con-
stants for all u(a, ·) and dη = η/(8K). Then for all ρ̂ that
are (e, ε)-close to ρ and all a, |u(a, ρ̂−u(a, ρ)| ≤ ||ρ̂−ρ||1K ≤
2η/(8K)K = η/4 by Lemma 3.3.

Let a /∈ ABRη(ρ) and a′ ∈ argmaxa′∈ABRη(ρ) u(a′, ρ̂).

Then u(a, ρ) + η < u(a′, ρ). Combining this with the above
gives u(a, ρ̂) + η/2 < u(a′, ρ̂). Thus a /∈ ABRη/2(ρ̂).

Lemmas 3.1 and 3.4 give requirements on (e, ε). In the
statement of the theorem, we call (e, ε) η-acceptable if they
satisfy the requirements of both lemmas for η/2 and all η-
best-reply sequences converge in Γ.

Theorem 3.5. Let Γ be a large anonymous game where
approximate best-reply dynamics converge and let (e, ε) be
η-acceptable for Γ. If all agents are ε-stage learners then,
for all runs, there exists an η-best-reply sequence ρ0, ρ1, . . .
such that in stage n at least a 1− e fraction will learn a best
reply to ρn with probability 1.

Proof. ρ0 = ρ̂0, so ρ̂0 is (e, ε)-close to ρ. Assume ρ̂n is
(e, ε)-close to ρ. By Lemma 3.1 at least a 1− e fraction will
learn a η/2-best reply to ρ̂n. By Lemma 3.4, this is a η-best
reply to ρn. Thus ρ̂n+1 will be (e, ε)-close to ρn+1.

Theorem 3.5 guarantees that after a finite number of stages,
agents will be close to an approximate Nash equilibrium pro-
file. Specifically, ρ̂n will be (e, ε)-close to an η-Nash equi-
librium profile ρn. Note that this means that ρ̂n is actually

an η′-Nash equilibrium for a larger η′ that depends on η,e,ε,
and the Lipschitz constant K.

Our three requirements for a practical learning algorithm
were that it require minimal information, converge quickly
in a large system, and be robust to noise. Stage learning re-
quires only that an agent know his own payoffs, so the first
condition is satisfied. Theorem 3.5 shows that it satisfies
the other two requirements. Convergence is guaranteed in
a finite number of stages. While the number of stages de-
pends on the game, in Section 3.2 we argued that in many
cases it will be quite small. Finally, robustness comes from
tolerating an e fraction of errors. While in our proofs we
assumed these errors were due to learning, the analysis is
the same if some of this noise is from other sources such
as churn (agents entering and leaving the system) or agents
making errors. We discuss this issue more in Section 5.

4. SIMULATION RESULTS
Theorem 3.5 guarantees convergence for a sufficiently small

exploration probability ε, but decreasing ε also increases τ ,
the length of a stage. Increasing the length of a stage means
that agents take longer to reach equilibrium, so for stage
learning to be practical, ε needs to be relatively large. To
show that ε can be large in practice, we tested populations
of stage learners in a number of games where best reply
dynamics converge and experienced convergence with ε be-
tween 0.01 and 0.05. This allows convergence within a few
thousand rounds in many games. While our theorem applies
only to stage learning, the analysis provides intuition as to
why a reasonable algorithm that changes slowly enough that
other learners have a chance to learn best replies should con-
verge as well. To test a very different type of algorithm, we
also implemented the no-regret learning algorithm of Hart
and Mas-Collell [14]. This algorithm also quickly converged
close to Nash equilibrium, although in many games it did
not converge as closely as stage learning.

Our theoretical results make two significant predictions
about factors that influence the rate of convergence. Lemma 3.1
tells us that the length of a stage is determined by the num-
ber of times each strategy needs to be explored to get an
accurate estimate of its value. Thus the amount of infor-
mation provided by each observation has a large effect on
the rate of convergence. For example, in a random match-
ing game, an agents payoff provides information about the
strategy of one other agent. On the other hand, if he receives
his expected payoff for being matched, a single observation
provides information about the entire distribution of strate-
gies. In the latter case the agent can learn with many fewer
observations.

A related prediction is that having more agents will lead to
faster convergence, particularly in games where payoffs are
determined by the average behavior of other agents, because
variance in payoffs due to exploration and mistakes decreases
as the number of agents increases. Our experimental results
illustrate both of these phenomena.

We tested the learning behavior of stage learners and no-
regret learners in a number of games, including prisoner’s
dilemma, a climbing game [6], the congestion game described
in [12] with both ACP and serial mechanisms, and two differ-
ent contribution games (called a Diamond-type search model
in [20]). We implemented payoffs both by randomly match-
ing players and by giving each player what his expected pay-
off would have been had he been randomly matched (some
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Figure 1: Convergence with the average

payoffs were adjusted to make the games symmetric). Re-
sults were similar across the different games, so we report
only the results for a contribution game.

In the contribution game, agents choose strategies from 0
to 19, indicating how much effort they contribute to a collec-
tive enterprise. The value to an agent depends on how much
he contributes, as well as how much other agents contribute.
If he contributes x and the contribution of the other agents
is y, then his utility is 2xy − c(x), where c(0) = 0, c(1) = 1,
c(x) = (x−1)2 for x ∈ 2, . . . , 8 and c(x) = x2 +2n for x > 8.
We considered two versions of this game. In the first, y is
determined by the average strategy of the other agents. In
the second, y is determined by randomly matching the agent
with another agent.

Our implementation of stage learners is as described in
Section 3.3, with ε = 0.05 when y is determined by the av-
erage and ε = 0.01 when y is determined by random match-
ing. Rather than taking the length of stage τ as 1/ε2, we
set τ = 250 and 2000, respectively; this gives better perfor-
mance. Our implementation of no-regret learners is based
on that of Hart and Mas-Colell [14], with improvements sug-
gested by Greenwald et al. [12].

Figure 1 shows the results for learners in the version of the
game where y is the average strategy of other agents. Each
curve shows the distance from equilibrium as a function of
the number of rounds of a population of agents of a given size
using a given learning algorithm. The results were averaged
over 10 runs. Since the payoffs for nearby strategies are
close, we want our notion of distance to take into account
that agents playing 7 are closer to equilibrium (8) than those
playing zero. Therefore, we consider the expected distance
of ρ from equilibrium: a ρ(a)|a − 8|. To determine ρ, we
counted the number of times each action was over the length
of a stage, so in practice the distance will never be zero
due to mistakes and exploration. For ease of presentation,
the graph shows only populations of size up to 100; similar
results were obtained for populations up to 5000 agents.

For stage learning, increasing the population size has a
dramatic impact. With two agents, mistakes and best replies
to the results of these mistakes cause behavior to be quite
chaotic. With ten agents, agents successfully learn, although
mistakes and suboptimal strategies are quite frequent. With
one hundred agents, all the agents converge quickly to equi-
librium strategies and mistakes are rare; almost all of the
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Figure 2: Convergence with random matching

distance from equilibrium is due to exploration.
No-regret learning also converges quickly, but the “qual-

ity” of convergence (how close we get to equilibrium) is not
as high. The major problem is that a significant fraction of
agents play near-optimal actions rather than optimal action.
This may have a number of causes. First, the guarantee is
that the asymptotic value of ρ will be an equilibrium, which
allows the short periods that we consider to be far from equi-
librium. Second, the quality of convergence depends on ε,
so tight convergence may require a much lower rate of ex-
ploration and thus a much longer convergence time. Finally,
this algorithm is guaranteed to converge only to a correlated
equilibrium, which may not be a Nash equilibrium.

Figure 2 shows the results when agent payoffs are deter-
mined by randomly matching agents. Even for large num-
bers of stage learners, convergence is not as tight and takes
on the order of ten times longer. This is a result of the infor-
mation available to agents. When payoffs were determined
by the average strategy, a single observation was sufficient
to evaluate a strategy, so we could use very short stages. To
deal with the noise introduced by random matching we need
much longer stages. The number of stages to convergence
is similar. Even with longer stages and a large number of
agents, mistakes are quite common. Nevertheless agents do
successfully learn. The performance of no-regret learners is
less affected because they use payoff information from the
entire run of the game, while stage learners discard payoff
information at the end of each stage.

Convergence in the random-matching game takes approx-
imately 20,000 rounds, which is too slow for many applica-
tions. If a system design requires this type of matching, this
makes learning problematic. However, the results of Fig-
ure 1 suggest that the learning could be done much faster
if the system designer could supply agents with more infor-
mation. This suggests that collecting statistical information
about the behavior of agents may be a critical feature for
ensuring fast convergence. If agents know enough about the
game to determine their expected payoffs from this statisti-
cal information, then they can directly learn, as in Figure 1.
Even with less knowledge about the game, statistical infor-
mation can still speed learning, for example, by helping an
agent determine whether the results of exploring an action
were typical or due to the other agent using a rare action.
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5. DISCUSSION
While our results show that a natural learning algorithm

can learn efficiently in an interesting class of games, there
are many further issues that merit exploration.

Other Learning Algorithms
Our theorem assumes that agents use a simple rule for lear-
ing within each stage: they average the value of payoffs
received. However, there are certainly other rules for es-
timating the value of an action; any of these can be used
as long as the rule guarantees that errors can be made ar-
bitrarily rare given sufficient time. It is also not necessary
to restrict agents to stage learning. Stage learning guar-
antees a stationary environment for a period of time, but
such strict behavior may not be needed or practical. Other
approaches, such as exponentially discounting the weight of
observations [12, 19] or Win or Learn Fast [4] allow an algo-
rithm to focus its learning on recent observations and pro-
vide a stable environment in which other agents can learn.

Other Update Rules
In addition to using different algorithms to estimate the val-
ues of actions, a learner could also change the way he uses
those values to update his behavior. For example, rather
than basing his new strategy on only the last stage, he could
base it on the entire history of stages and use a rule in the
spirit of fictitious play. Since there are games where fictitious
play converges but best-reply dynamics do not, this could
extend our results to another interesting class of games, as
long as the errors in each period do not accumulate over
time. Another possibility is to update probabilistically or
use a tolerance to determine whether to update (see e.g. [7,
14]). This could allow convergence in games where best-
reply dynamics oscillate or decrease the fraction of agents
who make mistakes once the system reaches equilibrium.

Model Assumptions
Our model makes several unrealistic assumptions, most no-
tably that there are countably many agents who all share
the same utility function. Essentially the same results holds
with a large, finite number of agents, adding a few more
“error terms”. In particular, since there is always a small
probability that every agent makes a mistake at the same
time, we can prove only that no more than a 1 − e fraction
of the agents make errors in most rounds, and that agents
spending most of their time playing equilibrium strategies.

We have also implicitly assumed that the set of agents is
fixed. We could easily allow for churn: agents entering and
leaving the system. A reasonable policy for newly-arriving
agents is to pick a random aε to use in the next stage. If
all agents do this, it follows that convergence is unaffected:
we can treat the new agents as part of the e fraction that
made a mistake in the last stage. Furthermore, this tells us
that newly arriving agents “catch up” very quickly. After a
single stage, new agents are guaranteed to have learned a
best reply with probability at least 1 − e.

Finally, we have assumed that all agents have the same
utility function. Our results can easily be extended to in-
clude a finite number of different types of agents, each with
their own utility function, since the SLLN can be applied to
each type of agent. We believe that our results hold even
if the set of possible types is infinite. This can happen, for
example, if an agent’s utility depends on a valuation drawn

from some interval. However, some care is needed to define
best-reply sequences in this case.

State
One common feature of distributed systems not addressed
in this work is state. For example, in a scrip system where
agents pay each other for service using an internal currency
or scrip, whether an agent should seek to provide service
depends on the amount of money he currently has [8].

In principle, we could extend our framework to games
with state: in each stage each agent chooses a policy to
usually follow and explores other actions with probability ε.
Each agent could then use some off-policy algorithm (one
where the agent can learn without controlling the sequence
of observations; see [16] for examples) to learn an optimal
policy to use in the next stage. One major problem with this
approach is that standard algorithms learn too slowly for our
purposes. For example, Q-learning [25] typically needs to
observe each state-action pair hundreds of times in practice.
The low exploration probability means that the expected
|S||A|/ε rounds needed to explore each even once for each
pair is large. Efficient learning requires more specialized
algorithms that can make better use of the structure of a
problem, but this also makes providing a general guarantee
of convergence more difficult. Another problem is that, even
if an agent explores each action for each of his possible local
states, the payoff he receives will depend on the states of
the other agents and thus the actions they chose. We need
some property of the game to guarantees this distribution
of states is in some sense “well behaved.”

Despite these concerns, preliminary results suggest that
simple learning algorithms work well for games with state.
In experiments on a game using the model of a scrip system
from [8], we found that a stage-learning algorithm that uses
a specialized algorithm for determining the value of actions
in each stage converges to equilibrium quickly despite churn
and agents learning at different rates.

Mixed Equilibria
Another restriction of our results is that our agents only
learn pure strategies. One way to address this is to discretize
the mixed strategy space (see e.g. [7]). If one of the resulting
strategies is sufficiently close to an equilibrium strategy and
best-reply dynamics converge with the discretized strategies,
then we expect agents to converge to a near-equilibrium dis-
tribution of strategies. We have had empirical success using
this approach to learn to play rock-paper-scissors.

Unexpected and Byzantine Behavior
In practice, we expect that not all agents will be trying to
learn optimal behavior in a large system. Some agents may
simply play some particular (possibly mixed) strategy that
they are comfortable with, without trying to learn a better
strategy. Others may be learning but with an unanticipated
utility function. Whatever their reasons, if these sufficiently
few such agents are choosing their strategies i.i.d. from fixed
distribtions (or at least fixed for each stage), then our results
hold without change. This is because we already allow an
e fraction of agents to make arbitrary mistakes, so we can
treat these agents as simply mistaken.

Byzantine agents, who might wish to disrupt learning as
much as possible, do not fit as neatly into our framework;
they need not play the same strategy for an entire stage.



AAMAS  2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary 

772

However, we expect that since correct agents are random-
izing their decisions, a small number of Byzantine agents
should not be able to cause many agents to make mistakes.

6. CONCLUSION
Learning in distributed systems requires algorithms that

are scalable to thousands of agents and can be implemented
with minimal information about the actions of other agents.
Most general-purpose multiagent learning algorithms fail one
or both of these requirements. We have shown here that
stage learning can be an efficient solution in large anonymous
games where approximate best-reply dynamics lead to ap-
proximate pure strategy Nash equilibria. Many interesting
classes of games have this property, and it is frequently found
in designed games. In contrast to previous work, the time
to convergence guaranteed by the theorem does not increase
with the number of agents. If system designers can find
an appropriate game satisfying these properties on which to
base their systems, they can be confident that nodes can
efficiently learn appropriate behavior.

Our results also highlight two factors that aid conver-
gence. First, having more learners often improves perfor-
mance. With more learners, the noise introduced into pay-
offs by exploration and mistakes becomes more consistent.
Second, having more information typically improves perfor-
mance. Publicly available statistics about the observed be-
havior of agents can allow an agent to learn effectively while
making fewer local observations.
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